Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(3): e1012071, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38457461

RESUMO

BACKGROUND: Eosinophilia is a hallmark of helminth infections and eosinophils are essential in the protective immune responses against helminths. Nevertheless, the distinct role of eosinophils during parasitic filarial infection, allergy and autoimmune disease-driven pathology is still not sufficiently understood. In this study, we established a mouse model for microfilariae-induced eosinophilic lung disease (ELD), a manifestation caused by eosinophil hyper-responsiveness within the lung. METHODS: Wild-type (WT) BALB/c mice were sensitized with dead microfilariae (MF) of the rodent filarial nematode Litomosoides sigmodontis three times at weekly intervals and subsequently challenged with viable MF to induce ELD. The resulting immune response was compared to non-sensitized WT mice as well as sensitized eosinophil-deficient dblGATA mice using flow cytometry, lung histology and ELISA. Additionally, the impact of IL-33 signaling on ELD development was investigated using the IL-33 antagonist HpARI2. RESULTS: ELD-induced WT mice displayed an increased type 2 immune response in the lung with increased frequencies of eosinophils, alternatively activated macrophages and group 2 innate lymphoid cells, as well as higher peripheral blood IgE, IL-5 and IL-33 levels in comparison to mice challenged only with viable MF or PBS. ELD mice had an increased MF retention in lung tissue, which was in line with an enhanced MF clearance from peripheral blood. Using eosinophil-deficient dblGATA mice, we demonstrate that eosinophils are essentially involved in driving the type 2 immune response and retention of MF in the lung of ELD mice. Furthermore, we demonstrate that IL-33 drives eosinophil activation in vitro and inhibition of IL-33 signaling during ELD induction reduces pulmonary type 2 immune responses, eosinophil activation and alleviates lung lacunarity. In conclusion, we demonstrate that IL-33 signaling is essentially involved in MF-induced ELD development. SUMMARY: Our study demonstrates that repeated sensitization of BALB/c mice with L. sigmodontis MF induces pulmonary eosinophilia in an IL-33-dependent manner. The newly established model recapitulates the characteristic features known to occur during eosinophilic lung diseases (ELD) such as human tropical pulmonary eosinophilia (TPE), which includes the retention of microfilariae in the lung tissue and induction of pulmonary eosinophilia and type 2 immune responses. Our study provides compelling evidence that IL-33 drives eosinophil activation during ELD and that blocking IL-33 signaling using HpARI2 reduces eosinophil activation, eosinophil accumulation in the lung tissue, suppresses type 2 immune responses and mitigates the development of structural damage to the lung. Consequently, IL-33 is a potential therapeutic target to reduce eosinophil-mediated pulmonary pathology.


Assuntos
Asma , Filariose , Filarioidea , Eosinofilia Pulmonar , Humanos , Animais , Camundongos , Microfilárias , Imunidade Inata , Filariose/parasitologia , Interleucina-33 , Linfócitos/patologia , Filarioidea/fisiologia , Eosinófilos , Camundongos Endogâmicos BALB C
2.
Front Plant Sci ; 14: 1237054, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37662181

RESUMO

Losses due to disease and climate change are among the most important issues currently facing crop production. It is therefore important to establish the impact of climate change, and particularly of high carbon dioxide (hCO2), on plant immunity in cereals, which provide 60% of human calories. The aim of this study was to determine if hCO2 impacts Brachypodium distachyon immunity, a model plant for temperate cereals. Plants were grown in air (430 ppm CO2) and at two high CO2 conditions, one that is relevant to projections within the coming century (1000 ppm) and a concentration sufficient to saturate photosynthesis (3000 ppm). The following measurements were performed: phenotyping and growth, salicylic acid contents, pathogen resistance tests, and RNAseq analysis of the transcriptome. Improved shoot development was observed at both 1000 and 3000 ppm. A transcriptomic analysis pointed to an increase in primary metabolism capacity under hCO2. Alongside this effect, up-regulation of genes associated with secondary metabolism was also observed. This effect was especially evident for the terpenoid and phenylpropanoid pathways, and was accompanied by enhanced expression of immunity-related genes and accumulation of salicylic acid. Pathogen tests using the fungus Magnaporthe oryzae revealed that hCO2 had a complex effect, with enhanced susceptibility to infection but no increase in fungal development. The study reveals that immunity in B. distachyon is modulated by growth at hCO2 and allows identification of pathways that might play a role in this effect.

3.
Front Microbiol ; 14: 1213143, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37440891

RESUMO

Filarial nematodes can cause debilitating diseases such as lymphatic filariasis and onchocerciasis. Oxfendazole (OXF) is one promising macrofilaricidal candidate with improved oral availability compared to flubendazole (FBZ), and OXF is currently under preparation for phase 2 clinical trials in filariasis patients. This study aimed to investigate the immune system's role during treatment with OXF and FBZ and explore the potential to boost the treatment efficacy via stimulation of the immune system. Wild type (WT) BALB/c, eosinophil-deficient ΔdblGata1, IL-4r/IL-5-/-, antibody-deficient µMT and B-, T-, NK-cell and ILC-deficient Rag2/IL-2rγ-/- mice were infected with the rodent filaria Litomosoides sigmodontis and treated with an optimal and suboptimal regimen of OXF and FBZ for up to 5 days. In the second part, WT mice were treated for 2-3 days with a combination of OXF and IL-4, IL-5, or IL-33. Treatment of WT mice reduced the adult worm burden by up to 94% (OXF) and 100% (FBZ) compared to vehicle controls. In contrast, treatment efficacy was lower in all immunodeficient strains with a reduction of up to 90% (OXF) and 75% (FBZ) for ΔdblGata1, 50 and 92% for IL-4r/IL-5-/-, 64 and 78% for µMT or 0% for Rag2/IL-2rγ-/- mice. The effect of OXF on microfilariae and embryogenesis displayed a similar pattern, while FBZ's ability to prevent microfilaremia was independent of the host's immune status. Furthermore, flow cytometric analysis revealed strain-and treatment-specific immunological changes. The efficacy of a shortened 3-day treatment of OXF (-33% adult worms vs. vehicle) could be boosted to a 91% worm burden reduction via combination with IL-5, but not IL-4 or IL-33. Our results suggest that various components of the immune system support the filaricidal effect of benzimidazoles in vivo and present an opportunity to boost treatment efficacy.

4.
Front Immunol ; 13: 866373, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36353644

RESUMO

Filarial parasites are tissue dwelling worms transmitted by hematophagous vectors. Understanding the mechanisms regulating microfilariae (the parasite offspring) development is a prerequisite for controlling transmission in filarial infections. Th2 immune responses are key for building efficient anti-parasite responses but have been shown to also lead to detrimental tissue damage in the presence of microfilariae. Litomosoides sigmodontis, a rodent filaria residing in the pleural cavity was therefore used to characterize pleuropulmonary pathology and associated immune responses in wild-type and Th2 deficient mice. Wild-type and Th2-deficient mice (Il-4rα-/-/Il-5-/- ) were infected with L. sigmodontis and parasite outcome was analyzed during the patent phase (when microfilariae are in the general circulation). Pleuropulmonary manifestations were investigated and pleural and bronchoalveolar cells were characterized by RNA analysis, imaging and/or flow cytometry focusing on macrophages. Il-4rα-/-/Il-5-/- mice were hypermicrofilaremic and showed an enhanced filarial survival but also displayed a drastic reduction of microfilaria-driven pleural cavity pathologies. In parallel, pleural macrophages from Il-4rα-/-/Il-5-/- mice lacked expression of prototypical alternative activation markers RELMα and Chil3 and showed an altered balance of some markers of the arginine metabolic pathway. In addition, monocytes-derived F4/80intermediate macrophages from infected Il-4rα-/-/Il-5-/- mice failed to mature into resident F4/80high large macrophages. Altogether these data emphasize that the presence of both microfilariae and IL-4R/IL-5 signaling are critical in the development of the pathology and in the phenotype of macrophages. In Il-4rα-/-/Il-5-/- mice, the balance is in favor of parasite development while limiting the pathology associated with the host immune response.


Assuntos
Filariose , Filarioidea , Animais , Camundongos , Arginina , Interleucina-5 , Macrófagos/patologia , Camundongos Endogâmicos BALB C , Microfilárias/genética , Células Th2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...